51 research outputs found

    Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Get PDF
    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume

    Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic Forecasting

    Full text link
    With the acceleration of urbanization, traffic forecasting has become an essential role in smart city construction. In the context of spatio-temporal prediction, the key lies in how to model the dependencies of sensors. However, existing works basically only consider the micro relationships between sensors, where the sensors are treated equally, and their macroscopic dependencies are neglected. In this paper, we argue to rethink the sensor's dependency modeling from two hierarchies: regional and global perspectives. Particularly, we merge original sensors with high intra-region correlation as a region node to preserve the inter-region dependency. Then, we generate representative and common spatio-temporal patterns as global nodes to reflect a global dependency between sensors and provide auxiliary information for spatio-temporal dependency learning. In pursuit of the generality and reality of node representations, we incorporate a Meta GCN to calibrate the regional and global nodes in the physical data space. Furthermore, we devise the cross-hierarchy graph convolution to propagate information from different hierarchies. In a nutshell, we propose a Hierarchical Information Enhanced Spatio-Temporal prediction method, HIEST, to create and utilize the regional dependency and common spatio-temporal patterns. Extensive experiments have verified the leading performance of our HIEST against state-of-the-art baselines. We publicize the code to ease reproducibility.Comment: 9 pages, accepted by CIKM'2

    Terrestrial-derived soil protein in coastal water: metal sequestration mechanism and ecological function.

    Get PDF
    Terrestrial fungi, especially arbuscular mycorrhizal (AM) fungi, enhance heavy metal sequestration and promote ecosystem restoration. However, their ecological functions were historically overlooked in discussions regarding water quality. As an AM fungi-derived stable soil protein fraction, glomalin-related soil protein (GRSP) may provide insights into the ecological functions of AM fungi associated with water quality in coastal ecosystems. Here, we first assessed the metal-loading dynamics and ecological functions of GRSP transported into aquatic ecosystems, characterized the composition characteristics, and revealed the mechanisms underlying Cu and Cd sequestration. Combining in situ sampling and in vitro cultures, we found that the composition characteristics of GRSP were significantly affected by the element and mineral composition of sediments. In situ, GRSP-bound Cu and Cd contributed 18.91-22.03% of the total Cu and 2.27-6.37% of the total Cd. Functional group ligands and ion exchange were the principal mechanisms of Cu binding by GRSP, while Cd binding was dominated by functional group ligands. During the in vitro experiment, GRSP sequestered large amounts of Cu and Cd and formed stable complexes, while further dialysis only released 25.74 ± 3.85% and 33.53 ± 3.62% of GRSP-bound Cu and Cd, respectively

    Terrestrial-derived soil protein in coastal water: Metal sequestration mechanism and ecological function

    Get PDF
    Abstract(#br)Terrestrial fungi, especially arbuscular mycorrhizal (AM) fungi, enhance heavy metal sequestration and promote ecosystem restoration. However, their ecological functions were historically overlooked in discussions regarding water quality. As an AM fungi-derived stable soil protein fraction, glomalin-related soil protein (GRSP) may provide insights into the ecological functions of AM fungi associated with water quality in coastal ecosystems. Here, we first assessed the metal-loading dynamics and ecological functions of GRSP transported into aquatic ecosystems, characterized the composition characteristics, and revealed the mechanisms underlying Cu and Cd sequestration. Combining in situ sampling and in vitro cultures, we found that the composition characteristics of GRSP were significantly affected by the element and mineral composition of sediments. In situ , GRSP-bound Cu and Cd contributed 18.91–22.03% of the total Cu and 2.27–6.37% of the total Cd. Functional group ligands and ion exchange were the principal mechanisms of Cu binding by GRSP, while Cd binding was dominated by functional group ligands. During the in vitro experiment, GRSP sequestered large amounts of Cu and Cd and formed stable complexes, while further dialysis only released 25.74 ± 3.85% and 33.53 ± 3.62% of GRSP-bound Cu and Cd, respectively

    Large-area, freestanding single-crystal gold of single nanometer thickness

    Full text link
    Two-dimensional single-crystal metals are highly sought after for next-generation technologies. Here, we report large-area (>10^4 {\mu}m2), single-crystal two-dimensional gold with thicknesses down to a single-nanometer level, employing an atomic-level-precision chemical etching approach. The ultrathin thickness and single-crystal quality endow two-dimensional gold with unique properties including significantly quantum-confinement-augmented optical nonlinearity, low sheet resistance, high transparency and excellent mechanical flexibility. By patterning the two-dimensional gold into nanoribbon arrays, extremely-confined near-infrared plasmonic resonances are further demonstrated with quality factors up to 5. The freestanding nature of two-dimensional gold allows its straightforward manipulation and transfer-printing for integration with other structures. The developed two-dimensional gold provides an emerging platform for fundamental studies in various disciplines and opens up new opportunities for applications in high-performance ultrathin optoelectronic, photonic and quantum devices

    PEMBELAJARAN LUKIS TOTEBAG PADA MATA PELAJARAN SENI BUDAYA DI KELAS X MIA 3 SMA NEGERI 3 BOYOLALI TAHUN AJARAN 2017/2018

    Get PDF
    ABSTRAK Muhammad Fahmi Al Amiq. PEMBELAJARAN LUKIS PADA TOTEBAG DALAM MATA PELAJARAN SENI BUDAYA DI KELAS X MIA 3 SMA NEGERI 3 BOYOLALI TAHUN AJARAN 2017/2018. Skripsi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret Surakarta, Januari 2018. Tujuan penelitian ini adalah untuk mengetahui: (1) Proses pelaksanaan pembelajaran Lukis Totebag di kelas X MIA 3 SMA Negeri 3 Boyolali tahun ajaran 2017/2018. Dan (2) Bagaimana bentuk hasil karya Lukis Totebag yang dihasilkan siswa di kelas X MIA 3 SMA Negeri 3 Boyolali tahun ajaran 2017/2018. Penelitian ini menggunakan pendekatan kualitatif. Sumber data yang digunakan adalah informan yang dipilih yaitu Bapak Subandiyo S.Pd selaku guru mata pelajaran seni budaya di kelas X MIA 3 SMA Negeri 3 Boyolali, serta foto proses pembelajaran, hasil karya siswa dan dokumen arsip. Teknik yang digunakan dalam pengumpulan data adalah observasi langsung, wawancara terstruktur dan mendalam, serta dokumentasi. Uji validitas data dilakukan dengan membandingkan sumber data yang di peroleh berupa daftar hasil wawancara dengan Bapak Subandiyo S.Pd selaku guru mata pelajaran Seni Budaya dengan siswa di kelas X MIA 3 SMA Negeri 3 Boyolali, serta review informant. Analisis data yang digunakan adalah model analisis mengalir, yaitu: reduksi data, sajian data, dan penarikan kesimpulan. Hasil penelitian ini menunjukkan bahwa: (1) Pembelajaran Lukis Totebag diawali dengan pembuatan RPP, selanjutnya pembelajaran dilaksanakan selama tiga kali pertemuan. Strategi yang digunakan guru dalam pembelajaran ini adalah pendekatan scientific. Metode pembelajaran yang digunakan meliputi metode ceramah, tanya jawab, diskusi, dan pemberian tugas. Media pembelajaran yang digunakan berupa slide power point dan media visual berupa sampel karya dari guru. Evaluasi pembelajaran dilakukan dengan menilai aspek kognitif, afektif, dan psikomotorik. Proses pembuatan karya dilakukan dengan beberapa langkah, yaitu membuat sketsa, proses pewarnaan, dan finishing. (2) Secara umum pembuatan karya lukis totebag siswa sudah baik, teknik lukis pada pewarnaan dan finishing dalam membuat karya lukis totebag sudah baik. Karya lukis totebag yang dihasilkan oleh siswa sudah mengandung unsur-unsur seni rupa, yaitu: garis, bentuk, bidang, gelap terang, dan warna. Selain itu, karya lukis totebag yang dihasilkan oleh siswa juga sudah mengandung prinsip-prinsip seni rupa, yaitu: irama (rhytm), dominasi (dominance), keseimbangan (balance), kesatuan (unity), keserasian (harmony), dan kesebandingan (proportion). Kata Kunci: Seni Budaya, Pembelajaran Seni Rupa, Lukis Toteba

    Plasmonics in Quantum region

    No full text
    Plasmonics is a rapidly growing field of research that has been intensely investigated in the past few decades, for its abundant underlying physics and fruitful practical applications in nanophotonics, integrated optics, optical communication and information processing. Benefiting from the ability to confine light below the diffraction limit and its ultrashort response time (~ 100 fs), a plasmonic-based optical device provides an ideal platform for the study of ultra-strong light-matter interaction and has demonstrated great promise in the strong-coupling quantum system, ultra-fast optical modulators and efficient chip-scale nonlinearities. However, the traditional plasmonic materials and nano-structures suffer from several drawbacks that hinder the further development of plasmonics, such as high optical loss and a limited nonlinear response. As a result, recent plasmonic-based devices have moved towards the quantum regime, searching for the better solution. And many recent reported results show noteworthy achievement. In this thesis, we have demonstrated that an efficient and tunable light source could be realized in delicately fabricated plasmonic nanostructures both in non-resonant and resonant conditions (with the metallic quantum well). It is done by engineering the electron wave-function coupling between plasmonic nanostructures (such as optical nano-antenna), and thus an efficient light generation is reached, which brings on-chip ultrafast and ultra-compact light sources one step closer to reality. In addition, we have shown that the nonlinear susceptibilities of ultra-thin plasmonic films could be engineered to be the state-of-the-art. It is done by introducing the quantum confinement into the plasmonic films (such as Au, Ag or TiN), so that a metallic quantum well is formed, which becomes new building blocks for the more complex plasmonic structures, such as metamaterials. This thesis starts from the theoretical investigation, followed by the nano-fabrication and experimental characterization, ends up with several interesting phenomena, their hidden physics and valuable applications. These quantum plasmonic materials and nano-structures realized in this thesis enable the further integration and functionalization of the plasmonic-based optical devices in the ultra-strong, efficient and fast light-matter interaction regime
    • …
    corecore